Selasa, 11 November 2014

Barisan Aritmatika dan Deret Aritmatika


Pengertian Barisan Matematika
Yang dinamakan barisan dari bilangan real adalah susunan bilangan yang mempunyai sifat keturunan (berpola), unsur-unsur suatu barisan disebut dengan istilah suku-suku barisan, dilambangkan dengan  U1, U2, U3, …, Un.
U1 = suku pertama
U2 = suku kedua
U3 = suku ketiga
Un = suku ke-n
Contoh barisan bilangan ganjil
1, 3, 5, 7, 9, …., 2n-1
suku pertaman (U1) = 1, suku kedua (U2) = 3, dan suku ke-n = 2n-1

Barisan Aritmatika
Definisi barisan ini adalah barisan yang setiap selisih antar suku yang berdekatan selalu konstan. Secara matematis dalam barisan aritmatika berlaku rumus
Un-Un-1 = konstan, dengan n = 2,3,4,...
 Nilai konstan pada definisi di atas disebut juga dengan beda barisan aritmatika (dilambangkan b)
Un-Un-1 = b
Contoh
23, 30, 37, 44, 51, … merupakan barisan aritmatika dengan beda 7
2, 7/4, 3/2, 5/4, 1, … adalah barisan aritmatika dengan beda -1/4
Jika a adalah suku pertama dari deret matika dan b adalah beda, maka rumus barisan aritmatika adalah
Un = a  + (n-1)b [rumus barisan aritmatika]
Contoh soal
Suatu barisan aritmetika, suku ketiganya adalah 36, jumlah suku ke-5 dan ke-7 adalah 144. Berapa suku ke seratus dari barisan tersebut.
Jawab :
U3 = 36 
a + (3-1)  b = 36 a + 2b = 36 ……. (1)
U5 + U7
a + 4b + a + 6 b = 144 2a + 10 b = 144  a + 5b =72 …… (2)
eliminasi persamaan (1) dengan persamaan (2)
a + 2b = 36
a + 5b = 72
————– –
-3b = – 36 
b = 12
a + 2b = 36
a + 2(12) = 36
a + 24 = 36 a = 12
suku ke 100, U100 = a +  (100-1) b = 12 + 99.12 = 100. 12 =1200
Suku Tengah Barisan Aritmatika
Jika suatu barisan aritmatika berjumlah ganjil, maka di antara barisan tersebut ada suku tengahnya. Lalu bagaimana cara menentukan nilai dari suku tengah tersebut?
Rumus mencari nilai suku tengah
Ut = 1/2 (U1+Un)
contoh soal
Jika ada barisan aritmetika 2, 4, 6, 8, 10, 12, 14, …, 1.200 Tentukan suku tengahnya!
Ut = 1/2 (U1+Un) = 1/2 (2+1200) = 1/2 x 1.202 = 601
Sisipan dalam Barisan Aritmatika
Jika ada dua buah bilagnan m dan n, kemudian sobat sisipkan diantara dua bilangan tersebut bilangan sebanyak k buah, maka akan diperoleh bentuk
m, m+b, m+2b, m+3b, m+4b, …, n
misal kita punya 2 bilangan 10 dan 20 kemudian akan kita sisipkan 4 buah bilangan di antaranya hingga membentuk deret aritmatika. Dari semula 2 suku sekarang ditambah 4 suku, total ada 6 suku.
10, 10+b, 10+2b, 10+3b, 10+4b, 20 pertanyaanya berapa nilai beda (b)?
Sobat bisa menggunakan rumus Un = a+(n-1)b 
20 = 10+(6-1)b 20 = 10 + 5b b = 2
untuk
rumus cepat sobat bisa menggunakan
b = [n-m]/[k+1]
Deret Aritmatika
Misalkan sobat punya suatu barisam aritmatikan U1, U2, U3, …. Un
maka jika sobat hitung melakukan penjumlahan suku secara berurutan dari suku pertama hingga suku ke-n, U1 + U2 + U3 + …. + Un itulah yang sdisebut dengan derat aritmatika. Sebut saja deret adalah jumlah dari suatu barisan aritmatika. Sn = jumlah n buah suku pertama dari suatu barisan aritmatika adalah
Sn = 1/2 n (2a+(n-1)b)
karena a+(n-1)b = Un
Sn = 1/2 n (a+a+(n-1)b)  = 1/2 n (a+Un)


Contoh soal
Misal saya punya sejumlah kelereng. Kelereng tersebut akan saya bagikan habis ke 5 orang dari sobat hitung menurut suatu aturan barisan aritmatika. Jika orang ketiga dapat 15 kelerang dan orang ke-4 dapat 19 kelerang. Berapa jumlah kelereng yang saya punya?
Pembahasan
Jumlah kelereng = deret artimatika dengan n = 5 (S5). Pertama kita cari nilai a dan b.
U3 = 15 a+2b = 15 …. (i)
U4 = 15
a+3b = 19 …. (ii)
……………………………………………. – (eliminasi)
– b = -4  
b = 4
a+2b = 15
a+8 = 15
a = 7
S5 = 1/2 5 (2(7)+(5-1)4) = 5/2 (30) = 75 buah kelereng.

Tidak ada komentar:

Posting Komentar